Core Mathematics 3 Paper B
 1. Find the set of values of x such that

$$
\begin{equation*}
|2 x-3|>|x+2| . \tag{5}
\end{equation*}
$$

2. Find, to 2 decimal places, the solutions of the equation

$$
3 \cot ^{2} x-4 \operatorname{cosec} x+\operatorname{cosec}^{2} x=0
$$

in the interval $0 \leq x \leq 2 \pi$.
3. A curve has the equation $x=y^{2}-3 \ln 2 y$.
(i) Show that

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y}{2 y^{2}-3} . \tag{3}
\end{equation*}
$$

(ii) Find an equation for the tangent to the curve at the point where $y=\frac{1}{2}$.

Give your answer in the form $a x+b y+c=0$ where a, b and c are integers.
4. (i) Use Simpson's rule with four intervals, each of width 0.25 , to estimate the value of the integral

$$
\begin{equation*}
\int_{0}^{1} x \mathrm{e}^{2 x} \mathrm{~d} x \tag{3}
\end{equation*}
$$

(ii) Find the exact value of the integral

$$
\begin{equation*}
\int_{\frac{1}{2}}^{1} \mathrm{e}^{1-2 x} \mathrm{~d} x . \tag{4}
\end{equation*}
$$

5.

The diagram shows the curve with equation $y=\frac{1}{\sqrt{3 x+1}}$.
The shaded region is bounded by the curve, the x-axis and the lines $x=1$ and $x=5$.
(i) Find the area of the shaded region.

The shaded region is rotated through four right angles about the x-axis.
(ii) Find the volume of the solid formed, giving your answer in the form $k \pi \ln 2$.
6.

The diagram shows a vertical cross-section through a vase.
The inside of the vase is in the shape of a right-circular cone with the angle between the sides in the cross-section being 60°. When the depth of water in the vase is $h \mathrm{~cm}$, the volume of water in the vase is $V \mathrm{~cm}^{3}$.
(a) Show that $V=\frac{1}{9} \pi h^{3}$.

The vase is initially empty and water is poured in at a constant rate of $120 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$.
(b) Find, to 2 decimal places, the rate at which h is increasing
(i) when $h=6$,
(ii) after water has been poured in for 8 seconds.
7. (i) Prove that, for $\cos x \neq 0$,

$$
\begin{equation*}
\sin 2 x-\tan x \equiv \tan x \cos 2 x . \tag{5}
\end{equation*}
$$

(ii) Hence, or otherwise, solve the equation

$$
\begin{equation*}
\sin 2 x-\tan x=2 \cos 2 x, \tag{4}
\end{equation*}
$$

for x in the interval $0 \leq x \leq 180^{\circ}$.
8. A rock contains a radioactive substance which is decaying. The mass of the rock, m grams, at time t years after initial observation is given by

$$
m=400+80 \mathrm{e}^{-k t},
$$

where k is a positive constant.
Given that the mass of the rock decreases by 0.2% in the first 10 years, find
(i) the value of k,
(ii) the value of t when $m=475$,
(iii) the rate at which the mass of the rock is decreasing when $t=100$.
9.

$$
\mathrm{f}(x)=3-\mathrm{e}^{2 x}, \quad x \in \mathbb{R} .
$$

(i) State the range of f .
(ii) Find the exact value of $\mathrm{ff}(0)$.
(iii) Define the inverse function $\mathrm{f}^{-1}(x)$ and state its domain.

Given that α is the solution of the equation $\mathrm{f}(x)=\mathrm{f}^{-1}(x)$,
(iv) explain why α satisfies the equation

$$
\begin{equation*}
x=\mathrm{f}^{-1}(x) \tag{2}
\end{equation*}
$$

(v) use the iterative formula

$$
x_{n+1}=\mathrm{f}^{-1}\left(x_{n}\right)
$$

with $x_{0}=0.5$ to find α correct to 3 significant figures.

